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Outline

=  Perception systems of agricultural vehicles
= Noise models and denoising techniques

= (Object detection and evaluation metrics

= Experiments and results
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Agricultural Perception Systems - Hardware

= Agriculture has heavy duty vehicles and cameras
=  Wireless transmission due to size
= (Often uses analog transmission techniques

= Mechanically stable

= More image noise

https://www.motec-cameras.com/en/industries/agricultural-vehicles
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https://www.motec-cameras.com/en/industries/agricultural-vehicles

’THE ROBOTICS RESEARCH LAB _

Agricultural Perception Systems - Task

= Depending on goal different perception tasks
= Surveillance

= Fruit yield

= Soil state

= Plant health

=  Automation
Position of Fruits
Leaves

= Rows

= QObstacles/Persons
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Noise Models - 1

Gaussian Noise Speckle Noise
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Noise Models - II

Rayleigh Noise | Periodic Noise Poisson Noise
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Denoising Techniques

= Mean Filter

= Median Filter
= Gaussian Blur
= Bilateral Filter

= Wavelet Filter

= Three variance values for noise models:

Low, Medium, High
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Object Detection Network
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Evaluation Metrics

= Mean Average Precision (mAP)
= Peak Signal to Noise Ration (PSNR)
= Intrinsic Dimension (ID)
= Two Nearest Neighbor estimator (TwoNN)?2
= Ratio between first and
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Experiments - Overview

= Baseline without additional noise
= Noise level via PSNR
= Single noise: low, medium, high variance
= Without Filter
= With Filter
=  Mixture of noises
= With Filter
= Without Filter

. |AP@0.5 mAP@[0.05,0.95]

Baseline 91.67 41.4
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Experiments — Low Noise
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Experiments — Medium Noise

a0 T 40
S T S
§=] 5 5D
Wl il
-E B0 'E
5 5 60
@ 70 @
o n
@ @ /0
& =5 &
m B0 & B8O

a0 - a0

bilateral  noise mean gaussian blur median  wavelet bilateral  noise mean gaussian blur median  wavelet
Infer on noisy and denoised images Infer on original images

rrlab.cs.uni-kl.de



jIRLAB

THE ROBOTICS RESEARCH LAB

Experiments — High Noise
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Experiments — Mixture (Excerpt)

0 Aan
4an

an A0
n -1
W o .
aosn b= 2
E. E_ il g b
& = =
[ m =
% n E 0 E 0
) i ) - ) j .
_ — — - . _
an a0
o mesdidnn high low medidnm high ki median high
Bilateral filter Mean filter Wavelet filter

rrlab.cs.uni-kl.de




jIRLAB

THE ROBOTICS RESEARCH LAB

Experiments — ID without Noise
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Experiments — ID with Noise
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Experiments — ID train w/o Noise eval with
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Conclusion

= Low level noise minimum impact on the detection

= Increasing noise level degrades object detection accuracy
significantly

= Denoising methods remove noise and promote detection
accuracy

= Wavelet denoising generalizes better for different kinds of
noise with varying intensities

= Denoised images better generalization characteristics

= Denoised images require less parameters to describe data
representation on object manifold




