

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE (SEECS)

Fruit Disease classification using resource constrained devices

HASAN ALI KHATTAK

ESAW 2022 - OCTOBER 14, 2022

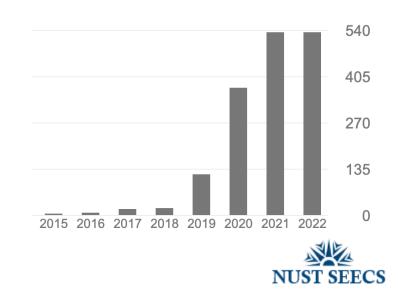
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY (NUST), ISLAMABAD.

2

about.me/hasanaliakhattak

- SisInf Lab Politecnico di Bari 15' Italy
- Associate Professor Department of Computing
- School of Electrical Engineering and Computer Science, NUST, Pakistan
- Internet of Things and Intelligent Systems Lab SEECS
- IEEE Senior Member ACM Professional Member
- Research Interests
 - Data Sciences Internet of Things Future Internet Architectures – Distributed Computing – World Wide Web

	All	Since 2017
Citations	1642	1623
h-index	22	22
i10-index	39	39



Agenda

- Introduction
- Motivation
- Related Work
- Problem Statement
- Methodology
- Implementation
- Results
- Future work
- References

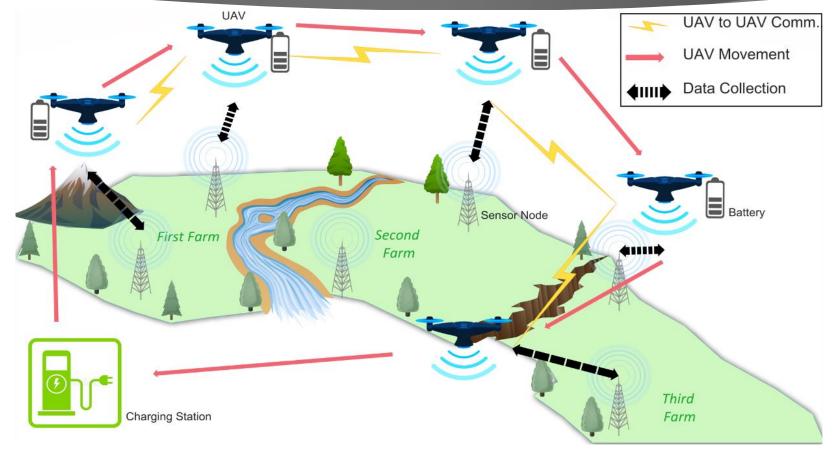
INTRODUCTION

- Machine Learning & computer vision have taken over the traditional computing methods, bringing a paradigm shift in all the sectors of technological development.
- On-device system benefits us by providing independence from remote resources.
- Fruit: Rich source of minerals and vitamins.

Agriculture plays a vital role in economy of Pakistan.

Contribution of apple market towards GDP is about 0.53% [1].

Motivation



ESAW2022 - Hasan Ali Khattak

AW. Malik (2022) Distributed Architectures for IoT Applications - ESAW2022 NUST Islamabad,

Motivation

- Lack of scientific means in agricultural development has placed Pakistan far behind in this competitive world.
- For identification of diseases, conventional approaches are used in Pakistan which are unreliable, inconsistent & time consuming
- Economic losses & reduced production in fruit sector.
- Mostly farmers are unable to procure expensive systems for fruits protection or its regular monitoring.
- We Need to equip farmers with a system which can identify/classify diseases at run time (Offline) via devices.

Related work

Authors	Title	Year	Dataset	Model	Accuracy	Gaps
Rabia Saleem , Jamal Hussain Shah, Muhammad Sharif	Mango Leaf Disease Recognition and Classification Using Novel Segmentation and Vein Pattern Technique	2021	Mango leaf	SVM	95.5%	Small leaf dataset, No deep learning models used, No edge device implementation & evaluation, No implementation in real time, minimization of identification time needed
Zhongxian Zhou a , Zhenzhen Song, et al	Real-time kiwifruit detection in orchard using deep learning on Android smartphones for yield estimation	2020	Kiwifruit	Mobile NetV2, Inceptio nV3	90.8%, 89.7%	Insufficient detection performance, detection speed and parameters does not meet requirements in real-time scenario, latest devices not used

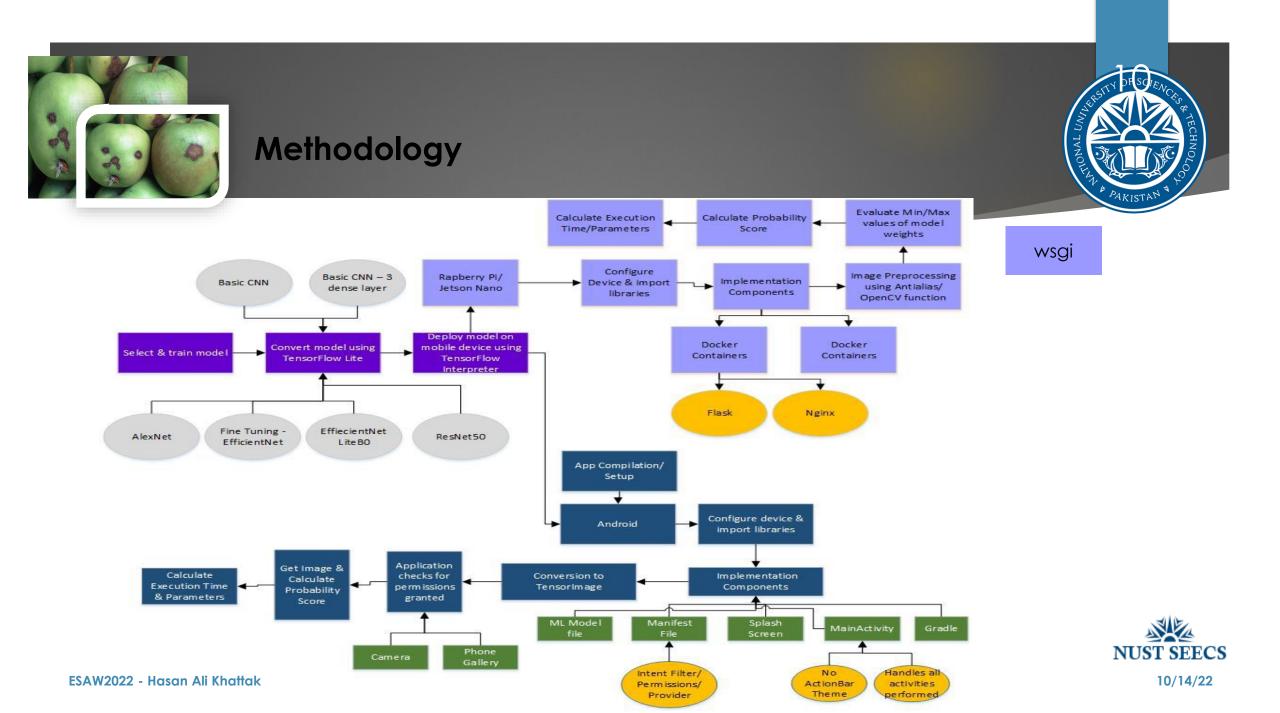
Related work

Authors	Title	Year	Dataset	Model	Accuracy	Gaps
Md. Tarek Habib,Md. Jueal Mia b , Mohammad Shorif	An In-depth Exploration of Automated Jack Fruit Disease Recognition	2020	Jack Fruit	Random Forest	89.52%	No implementation on edge devices, need to work on local fruits and deep learning models
Md. TarekHabib [,] Anup Majumder [,] A.Z.M .Jakaria	Machine vision based papaya disease recognition	2020	Рарауа	K- means, SVM	90%	User sends image to system online. it is sent to the back-end server, where experts share results, Time consuming. No deployment on edge devices. Not applicable in rural areas

PROBLEM STATEMENT

Conventional methods of fruit disease identification are error prone, time consuming, expensive & sometimes biased. Farmers are not equipped with an offline system which can help them to identify/classify various kind of fruit diseases at run time with accuracy through resource constraint devices. Cloud-based machine learning has issues such as latency & greater computational effort.

Q



Apple Fruit Disease Dataset - Kaggle

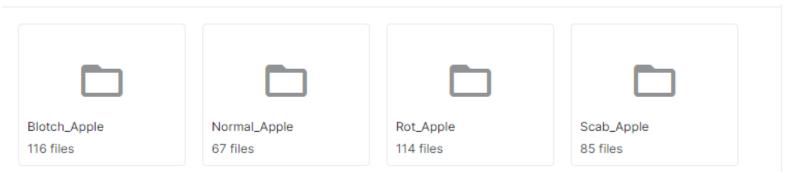
Total No of images: 504

3 diseased classes & 1 healthy class

Testing Data Files

Blotch_Apple	Normal_Apple	Rot_Apple	Scab_Apple
30 files	24 files	38 files	28 files

Training Data Files



Devices

12

Android

Samsung Galaxy A03s, Android version 11 Raspberry Pi 4 Desktop Starter Kit - SC0400US MD-01721 (8GB Memory)

Raspberry Pi

Arm32v7/Raspbian python:3.7

Jetson Nano

Nvidia Jetson Nano BO1 4GB. Quad core ARM Cortex-A57 Processor

arm64v8/ubuntu:18.04 Python 3.6.9

Implementation

- 1. Model implementation on dataset
- 2. Classify fruit diseases with the help of various machine learning models on resource constraint devices (Raspberry Pi, Jetson Nano & Android).
- 3. Attain useful classification results in remote areas where internet or cloud services are not feasible.
- 4. Compare each model via measures like accuracy & confusion matrix etc.
- 5. Evaluate system's performance for checking its effectiveness and impact of different models & devices in order to utilize it in real time applications where fast execution time is of prime importance.

Implementation

Languages

- Python
- Kotlin

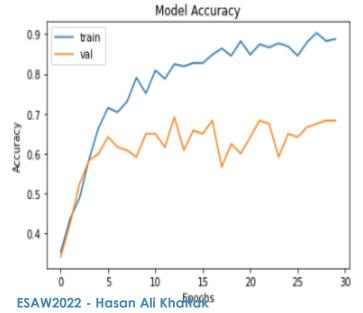
Tools

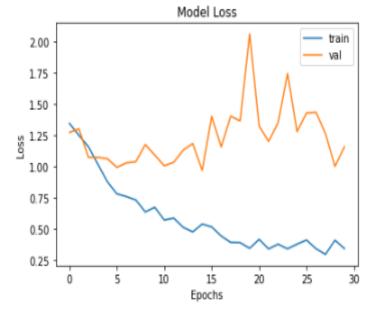
- Android Studio
- Jupyter Notebook
- Visual Code

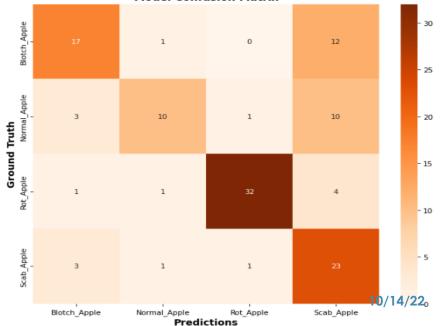
15

Basic CNN model

Layer	Input	Input Size	Activation	Nodes	Output Size		precision	recall	f1-score	support
Convolutional2D 1	Input Image	64x64x3	ReLU	-	62x62x32	1				
MaxPooling2D 1	Convolutional2D 1	62x62x32	-	-	31x31x32	Blotch_Apple	0.71	0.57	0.63	30
Convolutional2D 2	Maxpooling2D 1	31x31x32	ReLU	-	29x29x64	Normal_Apple	0.77	0.42	0.54	24
MaxPooling 2	Convolutional2D 2	29x29x64	-	-	14x14x64	Rot Apple	0.94	0.84	0.89	38
Flatten	MaxPooling2D 2	14x14x64	-	-	12544	Scab Apple	0.47	0.82	0.60	28
Dense 1	Flatten	12544	ReLU	32	32					
Dense 2	Dense 1	32	ReLU	64	64		0.00	0.00	0.00	100
Dense 3	Dense 2	64	ReLU	128	128	micro avg	0.68	0.68	0.68	120
Dense 4	Dense 3	128	ReLU	256	256	macro avg	0.72	0.66	0.66	120
Dense 5	Dense 4	256	ReLU	256	256	weighted avg	0.74	0.68	0.69	120
Dense 6	Dense 5	256	SoftMax	4	4	samples avg	0.68	0.68	0.68	120



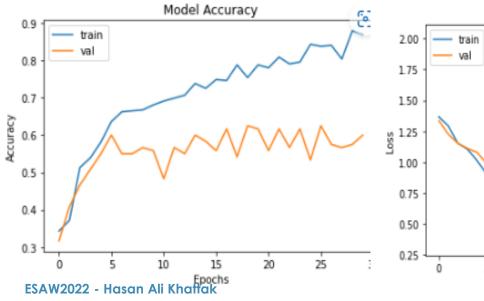


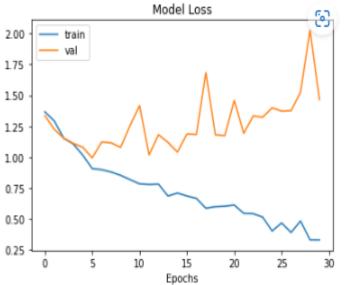


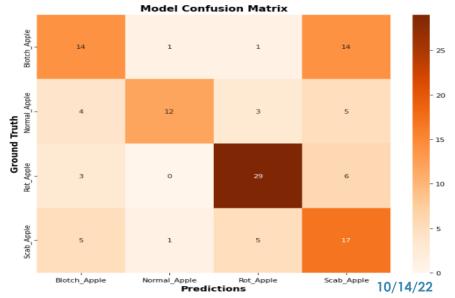
Model Confusion Matrix

Basic CNN model – 3 Dense layers

Layer	Input	Input Size	Activation	Nodes	Output Size		precision	recall	f1-score	support
Convolutional2D 1	Input Image	64x64x3	ReLU	-	58x58x32					
MaxPooling2D1	Convolutional2D 1	58x58x32	-	-	29x29x32	Blotch_Apple	0.54	0.47	0.50	30
Dropout	MaxPooling2D1	29x29x32		-	29x29x32	Normal_Apple	0.86	0.50	0.63	24
Convolutional2D 2	Dropout	29x29x32	ReLU	-	23x23x32	Rot_Apple	0.76	0.76	0.76	38
MaxPooling2D 2	Convolutional2D 2	23x23x32	-	-	11x11x32	Scab_Apple	0.40	0.61	0.49	28
Flatten	MaxPooling2D 2	11x11x32	-	-	3872	micro avg	0.60	0.60	0.60	120
Dense 1	Flatten	3872	ReLU	64	64	macro avg	0.64	0.58	0.60	120
Dense 2	Dense 1	64	ReLU	128	128	weighted avg	0.64	0.60	0.61	120
Dense 3	Dense 2	128	SoftMax	4	4	samples avg	0.60	0.60	0.60	120





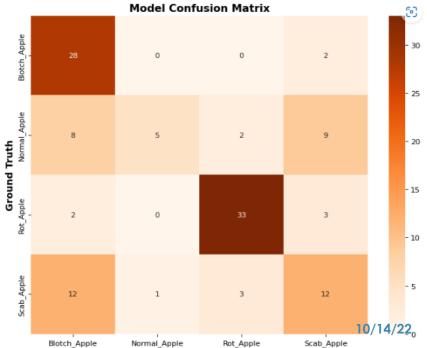


17

AlexNet Model

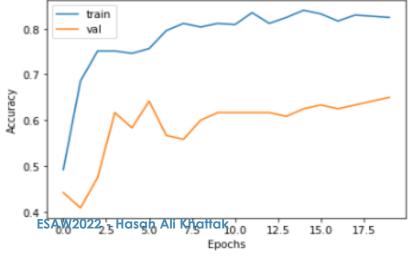
Layer	Input	Input Size	Activation	Nodes	Output Size	
Input	Input Image	227x227x3	-	-	227x227x3	٦
Conv2D 1	Input	227x227x3	-	-	55×55×96	1
BatchNormalization 1	Conv2D 1	55x55x96	-	-	55×55×96	
Activation 1	BatchNormalization 1	55x55x96	ReLU	-	55×55×96	1
MaxPooling 1	Activation 1	55x55x96	-	-	27×27×96	1
Conv2D 2	MaxPooling 1	27x27x96	-	-	27x27x256	Т
BatchNormalization 2	Conv2D 2	27,27,256	-	1000	27x27x256	1
Activation 2	BatchNormalization 2	27x27x256	ReLU	-	27x27x256	
MaxPooling 2	Activation 2	27x27x256	-	-	13×13×256	
Conv2D 3	MaxPooling 2	13×13×256	-	2.	13×13×384	
BatchNormalization 3	Conv2D 3	13×13×384	120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13x13x384	1
Activation 3	BatchNormalization 3	13×13×384	ReLU	-	13×13×384	1
Conv2D 4	Activation 3	13x13x384	-	-	13x13x384	
BatchNormalization 4	Conv2D 4	13x13x384	-	-	13x13x384	
Activation 4	BatchNormalization 4	13×13×384	ReLU	3 	13x13x384	1
Conv2D 5	Activation 4	13×13×384		82	13x13x256	
BatchNormalization 5	Conv2D 5	13×13×256	-	1.5	13×13×256	1
Activation 5	BatchNormalization 5	13×13×256	ReLU	13 -	13×13×256	
MaxPooling 3	Activation 5	13×13×256	-	-	6x6x256	1
Flatten	MaxPooling 3	6x6x256	-	-	9216	1
Dense 1	Flatten	9216	ReLU	4096	4096	1
Dense 2	Dense 1	4096	ReLU	4096	4096	
Dense 3	Dense 2	4096	SoftMax	4	4	

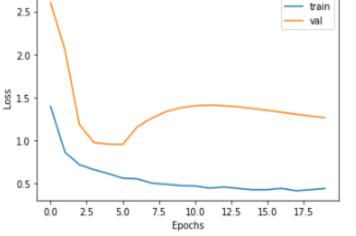
	precision	recall	f1-score	support
Blotch_Apple	0.56	0.93	0.70	30
Normal_Apple	0.83	0.21	0.33	24
Rot_Apple	0.87	0.87	0.87	38
Scab_Apple	0.46	0.43	0.44	28
micro avg	0.65	0.65	0.65	120
macro avg	0.68	0.61	0.59	120
weighted avg	0.69	0.65	0.62	120
samples avg	0.65	0.65	0.65	120



Predictions

Model Accuracy





EfficientNet Lite Model – Fine Tuning

Stage	Operator Layer	Resolution	Number of Channels	Number of Layers
1	Conv, 3 × 3	224×224	32	1
2	MBConv1, k 3 × 3	112×112	16	1
3	MBConv6, k 3 × 3	112 × 112	24	2
4	MBConv6, k 5 × 5	56 × 56	40	2
5	MBConv6, k 3 × 3	28×28	80	3
6	MBConv6, k 5 × 5	14×14	112	3
7	MBConv6, k 5 × 5	14×14	192	4
8	MBConv6, k 3 × 3	7×7	320	1
9	Conv 1 × 1 & Pooling & FC	7×7	1280	1

Layer	Input	Input Size	K	8	Activation	Nodes	Output Size
Efficient Net lite 0	Input Image	224x224x3		1	ReLU	1280	1280
Dropout 1	Efficient Net lite 0	1280			1.1		1280
Dense 1	Dropout 1	1280			1.1	4	4

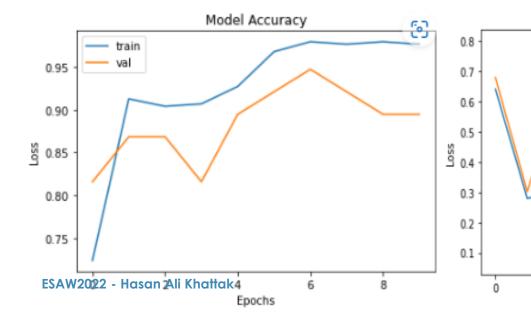
2

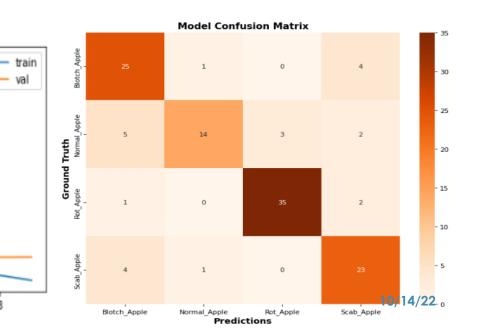
Model Loss

6

Epochs

	precision	recall	f1-score	support
Blotch_Apple	0.71	0.83	0.77	30
Normal_Apple	0.88	0.58	0.70	24
Rot_Apple	0.92	0.92	0.92	38
Scab_Apple	0.74	0.82	0.78	28
micro avg	0.81	0.81	0.81	120
macro avg	0.81	0.79	0.79	120
weighted avg	0.82	0.81	0.81	120
samples avg	0.81	0.81	0.81	120



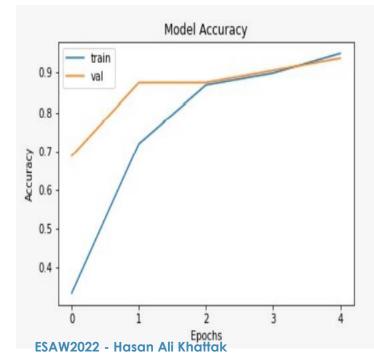


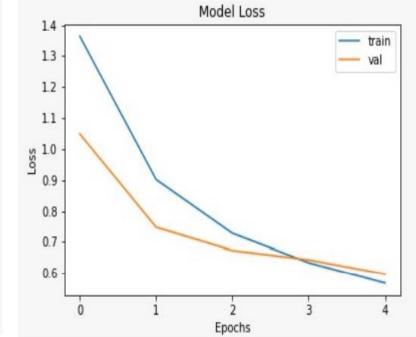
Efficient LiteB0 Model – Transfer Learning

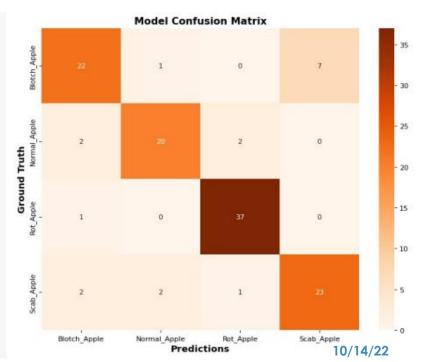
Stage	Operator Layer	Resolution	Number of Channels	Number of Layers
1	Conv, 3 × 3	224×224	32	1
2	MBConv1, k 3 × 3	112×112	16	1
3	MBConv6, k 3 × 3	112×112	24	2
4	MBConv6, k 5 × 5	56×56	40	2
5	MBConv6, k 3 × 3	28×28	80	3
6	MBConv6, k 5 × 5	14 imes 14	112	3
7	MBConv6, k 5 × 5	14×14	192	4
8	MBConv6, k 3 × 3	7×7	320	1
9	Conv 1 × 1 & Pooling & FC	7×7	1280	1

Layer	Input	Input Size	K	S	Activation	Nodes	Output Size
EfficientNet-Lite	Input Image	224x224x3			ReLU	1280	1280
Dropout 1	Efficient Net lite 0	1280	•	\mathbf{r}	1.0		1280
Dense 1	Dropout 1	1280		\mathbf{r}	1.0	4	4

Classes	Precision	Recall	F1-Score
Blotch_Apple	0.82	0.74	0.77
Normal_Apple	0.87	0.84	0.85
Rot_Apple	0.93	0.97	0.95
Scab_Apple	0.77	0.82	0.79

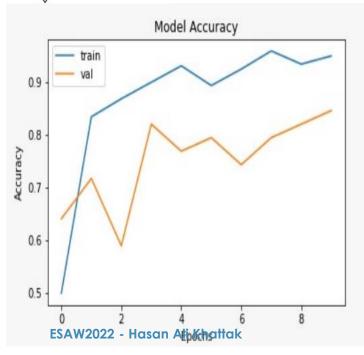


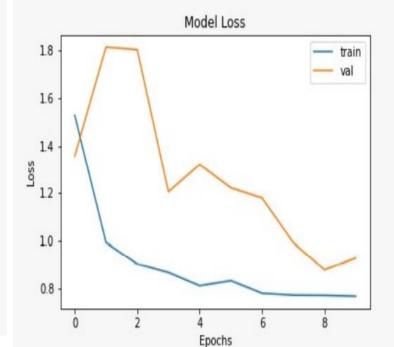


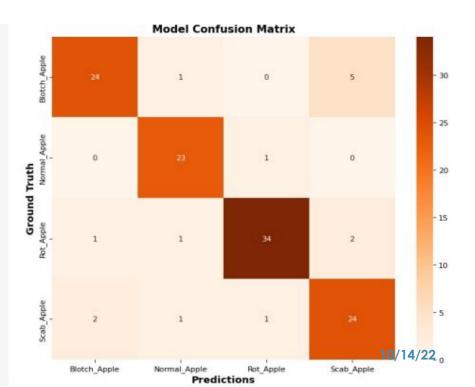


Resnet50 Model – Transfer Learning

C	\mathbf{P}	Weights	Layer	Input	Input Size	Activation	Nodes	Output Size	Classes	Precision	Recall	F1-Score
		Batch Normalization	ResNet50 baseModel	Input Layer	224x224x3	ReLU		2048	Blotch Apple	0.89	0.80	0.84
Rest		ReLU	Dropout	ResNet50 2048 baseModel		1.58123337		Dioteri_Apple	0.05	0.00	0.04	
Vet - V1		weights			2048		2048	2048	Normal_Apple	0.88	0.96	0.92
		Batch Normalization	Dense	Dropout	4	SoftMax	4	4	Rot_Apple	0.94	0.89	0.92
Add	lition	∃∢]							Scab_Apple	0.77	0.86	0.81
	27							I				

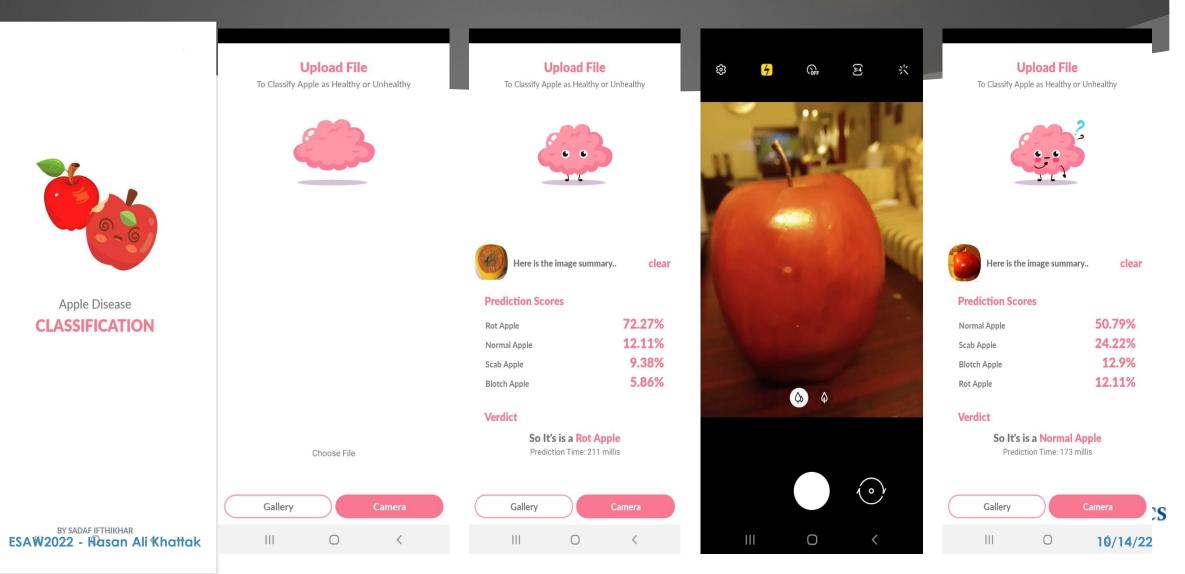




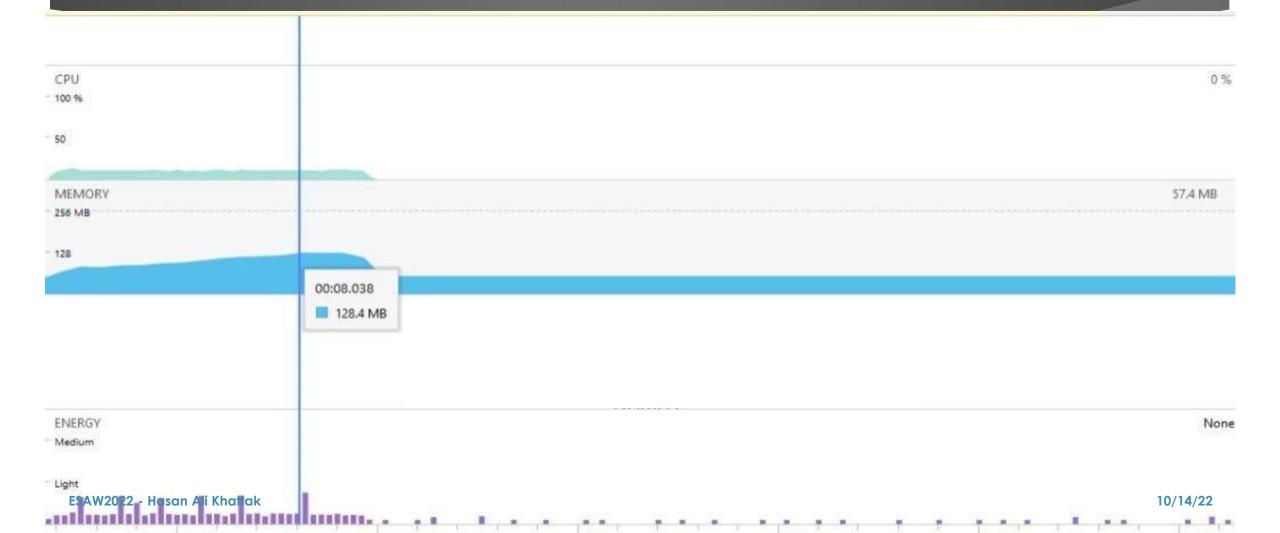


21

Android Application



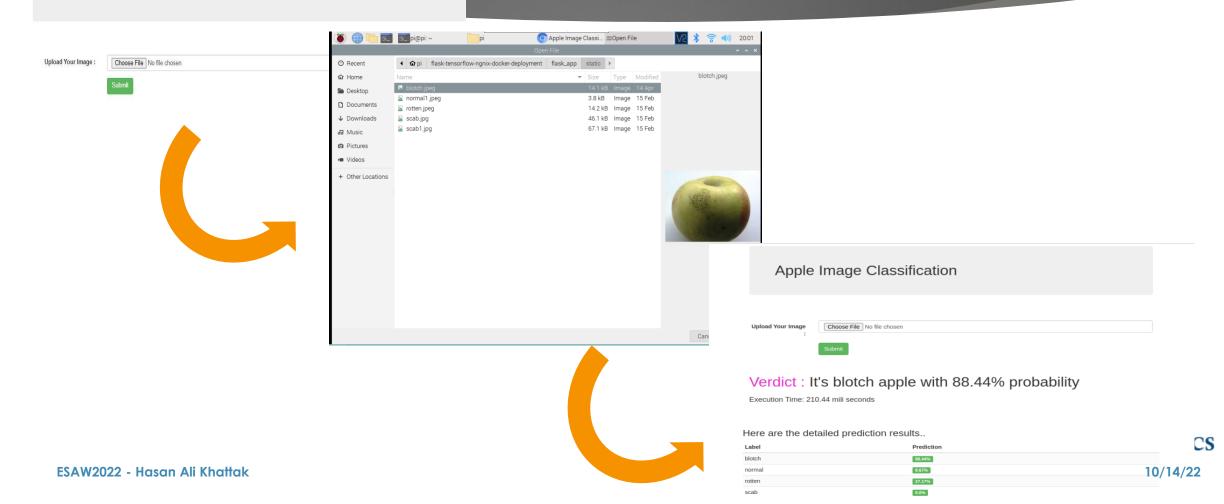
Android Application Utilization



23

Raspberry Pi/Jetson Nano Application

Apple Image Classification



Device Comparison Parameters

24

Memory%

0.09%

5.86%

Memory%

0.03% NUST SEECS 1.59%

				-	
Comparison Parameters	Android	Raspberry Pi	Jetson Nano		
Classification Time	192 millis	210 Millis	109 Millis		
Energy/Power	Light Energy	5V/2A	5V/581 mW		
CPU Load	10% (initially) drops to 0%	1.30%	0.89%		
Memory	128.4MB (initially) drop to 57mb	4.0%	0.10%	Jetson Nano	CPU%
				NginX	0.00%
				Flask	0.02%
				Raspberry Pi	CPU%
				NginX	0.00%
ESAW2022 - Hasan Ali Khattak				Flask	0.03%
LJAWZUZZ - MUSUII Ali KIIUIIUK					

A more refined data set with huge quantity and good quality of images can further strengthen the work.

For future work, respective edge devices could be assembled on unmanned aerial vehicles (UAVs) technologies which can be utilized to increase agricultural productivity while lowering labor costs, inspection times, and crop management expenses.

More powerful GPU device utilization can be performed.

REFERENCES

[1] [internet] <u>https://www.tridge.com/intelligences/apple/PK/export</u>

[2]"Mango Leaf Disease Recognition and Classification Using Novel Segmentation and Vein Pattern Technique", Saleem, Rabia and Shah, Jamal Hussain and Sharif, Muhammad and Yasmin, Mussarat and Yong, Hwan-Seung and Cha, Jaehyuk, 2021

[3] "Real-time kiwifruit detection in orchard using deep learning on Android[™] smartphones for yield estimation", ZhongxianZhou,ZhenzhenSong,LongshengFu, 2020

[4] "An in-depth exploration of automated jackfruit disease recognition", Md. TarekHabibab Md. JuealMia, Mohammad ShorifUddin", 2020

[5] "Machine vision based papaya disease recognition", Md. TarekHabib, AnupMajumder", 2020

THANK YOU

You can contact me by just searching me https://www.google.com/search?q=hasan+ali+khattak

